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ABSTRACT 

Model-Driven Architecture standardized by OMG facilitates separating the platform-independent part (PIM) and 

the platform-specific part (PSM) of a system model. The platform-independent artifacts are mainly UML models 

created with CASE tools. Due to this separation, PIM specified by the developers can be reused across several 

implementation platforms of the software. PSM is ideally generated automatically from PIM via model 

transformation steps performed by model compilers. Beyond the topology of the visual models additional 

constraints must be specified, which ensure the correctness of the attributes among others. Dealing with OCL 

constraints provides a solution for the unsolved issues, because topological and attribute transformation methods 

cannot perform and express the problems that can be addressed by constraint validation. This paper discusses the 

need for combining UML and OCL, it introduces the compilers in general, it shows the architecture of our OCL 

Compiler for .NET, and it presents the lexical and syntactic analysis as well as the semantic analysis and code 

generation techniques in detail. The OCL Compiler has been implemented as a module of our n-layer 

multipurpose modeling and metamodel-based transformation system called Visual Modeling and Transformation 

System (VMTS). The OCL Compiler module facilitates validating (i) constraints contained by the metamodels at 

the time of the model instantiation process, and (ii) constraints contained by the transformation steps during the 

metamodel-based graph transformation. An illustrative case study is also provided, which introduces how VMTS 

generates source code from a statechart diagram, and how it validates specific properties using the OCL 

Compiler. 
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1. INTRODUCTION 
Model transformation is a possible solution for 

realizing model compiler. Its methods are vital in 

several applications, for instance the Object 

Management Group’s (OMG) Model-Driven 

Architecture (MDA) standard [OMG03a] strongly 

builds on model compilers, which automatically 

create a platform-specific model from the platform-

independent models specified by the modelers. 

Software model transformation provides a basis for 

model compilers, which plays a central role in the 

MDA architecture. 

There are many CASE tools that support drawing 

UML diagrams and other features like code 

generation and reverse engineering. However, 

support for OCL attached to model transformation 

and mappings between models are rarely found in 

these tools. There are several tasks that a CASE tool 

should offer in order to provide support for OCL. For 

example, syntax analysis of OCL expressions and a 

precise mechanism for reporting syntactic errors help 

in writing syntactically correct OCL statements. An 

important feature is the semantic analyzer, which 

reports as many errors as possible in order to help the 

user develop solid OCL code.  

Often we need to specify a model more precisely than 

a topology-oriented visual modeling language 

facilitates it. It is a prevalent case that we want to 

define expressions and constraints on our model. The 
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Object Constraint Language (OCL) [OCL03a] is a 

formal language for analysis and design of software 

systems. It is a subset of the industry-standard 

Unified Modeling Language [UML03a] that allows 

software developers to write constraints and queries 

over object models. A constraint is a restriction on 

one or more values of an object-oriented model or 

system. There are four types of constraints. (i) An 

invariant is a constraint that states a condition that 

must always be met by all instances of the class, type, 

or interface. (ii) A precondition to an operation is a 

restriction that must be true at the moment before the 

operation is executed. Obligations are specified by 

postconditions. (iii) A postcondition to an operation 

is a restriction that must be true at the moment that 

the operation has just ended its execution. (iv) A 

guard is a constraint that must be true before a state 

transition fires. Besides these, OCL can be used as a 

navigation language as well. 

Our n-layer metamodel-based model storage and 

transformation software package is called Visual 

Modeling and Transformation System [Lev04a] 

[Vis03a]. VMTS is implemented using Microsoft 

.NET Framework [Mic03a] and illustrates an 

approach, where model storage and model 

transformation can be treated uniformly, and what 

links them together is the notion of the metamodel. 

Modeling environments built on metamodeling are 

highly configurable (visual) modeling tools allowing 

constraints to be specified in advance. VMTS uses 

graph rewriting for model transformation as a 

powerful tool with strong mathematical background 

[Lev04a]. The atoms of graph transformation are 

rewriting rules, where each rewriting rule consists of 

a left hand side graph (LHS) and a right hand side 

graph (RHS). Applying a graph rewriting rule means 

finding an isomorphic occurrence (match) of LHS in 

the graph to which the rule is being applied (host 

graph), and replacing this subgraph with RHS. 

Replacing means removing elements which are in 

LHS but not in RHS, and gluing elements which are 

in RHS but not in LHS. The graph transformation is 

defined as an ordered sequence of rewriting rules, in 

other words, we control the transformation process by 

sequencing the rewriting rules. Previous work 

[Lev04a] has introduced an approach, where LHS 

and RHS of the rules are built from metamodel 

elements. It means that an instantiation of LHS must 

be found in the host graph instead of the isomorphic 

subgraph of LHS. Hence LHS and RHS graphs are 

the metamodels of the graphs which we find and 

replace in the host graph.  

Often it is not enough to match graphs using the 

topological information only. There are cases in 

which we want to restrict the desired match by other 

properties, e.g. we want to match a subgraph with a 

node which has a special property, or which has a 

unique relation between the properties of the matched 

nodes. The metamodel-based definition of the 

rewriting rules facilitates assigning OCL constraints 

to the pattern rule nodes contained by the 

transformation steps, and with OCL these conditions 

can be expressed easily. A precondition 

(postcondition) assigned to a rewriting rule is a 

Boolean expression that must be true at the moment 

when the rewriting rule is fired (after the completion 

of a rewriting rule). If a precondition of a rewriting 

rule is not true then the rewriting rule fails without 

being fired. If a postcondition of a rewriting rule is 

not true after the execution of the rewriting rule, then 

the rewriting rule fails. A direct corollary of this is 

that an OCL expression in LHS is a precondition to 

the rewriting rule, and an OCL expression in RHS is 

a postcondition to the rewriting rule. A rewriting rule 

can be fired if and only if all conditions enlisted in 

LHS are true. Also, if a rewriting rule finished 

successfully, then all the conditions enlisted in RHS 

must be true. 

Constraints (pre- and postconditions) facilitate 

specifying precisely the execution of the steps 

contained by the transformation. Using constraints for 

each step, we can define the cases in detail, in which 

the step can be fired, and, of course, in which not.  
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Figure 1. Block diagram for checking constraints 

during the rewriting process 

Fig. 1 presents a block diagram to illustrate the 

method how VMTS checks the rewriting rule 

constraints during the rewriting process. It is possible 

in VMTS that LHS and RHS use different 

metamodels, but for the sake of simplicity in the 

block diagram they have a common metamodel. The 

rewriting rule contains OCL constraints. VMTS does 

not interpret the constraints during the rewriting, but 

an assembly is used that is generated by the OCL 

Compiler. The rewriting process uses the matches 

found by the matching process and the compiled 

assembly to validate the constraints on the matched 

parts of the host graph. The rewriting process 

generates the rewriting result if and only if a match 

satisfies the constraints (preconditions), and the step 

is successful if and only if the rewriting result 



satisfies the postconditions. In Fig. 1 the rewriting 

result is also an instance model of the metamodel, 

because LHS and RHS use the same metamodel. 

One of the most important parts of the constraint 

validation method is that our constraint checking 

approach does not interpret the constraints; OCL 

Compiler generates C# code and compiles it to an 

assembly, which validates the metamodel and the 

rewriting rule constraints. This method facilitates 

determining the complexity of the constraint 

validation method. 

This paper introduces the steps necessary for the 

implementation of the OCL Compiler for .NET, 

which is capable of compiling OCL constraints into 

source code and a binary file that checks the OCL 

constraints on the rewriting rules of a transformation 

that realizes an MDA model compiler. Our example 

is a UML statechart model. 

The rest of this paper is organized as follows: Section 

2 introduces the concept of a compiler in general, it 

presents the architecture of our OCL Compiler and it 

discusses the lexical and syntactic analysis as well as 

semantic analysis along with the code generation in 

detail. In Section 3 we illustrate a case study how to 

design a C# form behavior using Visual Studio.NET 

Form editor, and how VMTS generates the user 

interface handler code based on the statechart model. 

In this way the programmer needs to write the 

application-specific parts of the code only. Finally, 

conclusions and future work are delineated in Section 

4. 

2. CONTRIBUTION 
This section presents the general considerations 

related to compilers and their modules shortly and 

examines the VMTS OCL Compiler in detail.  
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 Figure 2. The steps of the compilation 

Implementing a compiler is a complex task consisting 

of several well-defined subparts. The input of a 

compiler is a textual file written in the source 

language, and the output is a textual file or a binary in 

the target language. The source language and the 

target language can be the same or different. The two 

main parts of the compilation are: (i) the analysis of 

the source language input, and (ii) the generation 

(synthesis) of the target language output based on the 

retrieved semantic information. Fig. 2 introduces the 

steps of the compilation process.  

Compiler Architecture 
The OCL Compiler is a part of VMTS, therefore the 

generated code and the compiled assembly have to fit 

in this environment. The block diagram of VMTS 

and the place of the OCL Compiler in a metamodel-

based model transformation system are depicted in 

Fig. 3. The user interfaces (Adaptive Modeler, Rule 

Editor) are functionally separated from the model 

storage unit (AGSI Core - Attributed Graph 

Architecture Supporting Inheritance), which uses an 

RDBMS (Microsoft SQL Server 2000) to store the 

model information. Besides this the AGSI Core 

exposes its interface to any other applications which 

may use other technique to process AGSI data.  

 
Figure 3. Block structure of VMTS  

The OCL Interface provides a unified interface for 

the user interface modules to access constraint 

validation. If it is required, it uses the OCL Compiler 

and loads the compiled binary (Compiled 

Constraints). AGSI Core stores and handles the 

models as labeled graphs: it simply uses nodes and 

edges. In OCL constraints these nodes and edges 

appear with their names as types, instances and 

associations. The main purpose of the AGSI Interface 

is to provide a linkage between the OCL expressions 

and the model over which the expression should be 

evaluated. AGSI provides type information from the 

AGSI Core objects. During the compilation and the 

constraint validation process we run only select 

commands on the AGSI Core data, therefore AGSI 

Interface does not support operations modifying the 

model. 

Lexical and Syntactic Analysis 
Lexical and syntactic analyses are realized by code in 

the ANSI C language, it is generated by the tools Flex 

[Fle99a] and Bison [Bis98a]. We chose these tools 

because (i) the compiler is implemented using 

Microsoft Visual Studio and it was easy to integrate 



the Flex and Bison tools into this environment, and 

(ii) the VMTS is executed also in the .NET 

environment. 

The first step of the lexical analysis is the 

tokenization, which distinguishes between the 

identifiers (name) and the keywords of the language. 

Tokenization is achieved by a table, which contains 

the keywords. The result of this process is a sequence 

of tokens, which contains the meaning of the source 

program. 

The task of the syntactic analysis is to find the 

deduction which generates the source code of the 

program, starting from the sentence symbol (S). The 

analysis is the same process but in the opposite 

direction. The analyzer reads the sequence of the 

tokens, and using the production rules it generates an 

Abstract Syntax Tree (AST), which is a model of the 

program that we want to compile. The AST is a direct 

association between the rules in the grammar and the 

nodes in the tree, and it is purely an abstract 

representation of the syntax, modeled as a tree 

[Ake03a] [Ham98a]. The inner nodes of the AST 

contain no terminal symbols, while the leaves contain 

the tokens. 

Original rules Reworked rules 

A -> b c? d A -> b d  |  b c d 

A -> b c* d A -> b optionalC d 

optionalC -> /* empty */ 

           | optionalC c 

A -> b c+ d A -> b optionalC d 

optionalC -> c | optionalC c 

Table 1. Reworked EBNF rules for Bison 

The UML specification [UML03a] uses EBNF 

notation [Ext96a] for the grammar specification, 

which we had to modify in certain places to be able to 

process it with Bison. We had to rework the ? 

(optional element), the * (0..* multiplicity) and the 

+ (1..* multiplicity) notations. Table 1 presents the 

original EBNF and the modified rules for Bison. The 

/* empty */ notation means the empty symbol. 

The generation of the AST is possible if and only if 

the program is syntactically correct [Loe03a]. 

Semantic Analysis 
OCL allows certain abbreviations in numerous places 

and leaving out some identifiers if they do not cause 

misconceptions (e.g. the left self identifier). Before 

we can start the semantic analysis we must perform a 

syntax tree transformation, which inserts the missing 

identifiers into the AST.  

In the OCL Compiler we cannot use the traditional 

symbol table, because the symbols are not in the code 

to be compiled, but it must be obtained from another 

place, namely, from the VMTS model database. The 

most important pieces information we need during 

the compilation are: (i) we have to decide about an 

identifier appearing in a type name position whether 

it is already defined, and whether it is visible for the 

context where it is appeared, (ii) during the OCL 

property selection we have to check the selected item 

of the class: whether it is an attribute, operation or 

association (and in this case whether it is navigable). 

For these tasks we implemented a class 

(TypeHandler) which hides the duality of the 

types from the other part of the OCL Compiler. We 

can consider this class as a dynamic symbol table of 

the types.  The TypeHandler class contains the 

typeOfCall function: 

String typeOfCall(String typeName, String 
propertyName, ’dot’|’arrow’) 

A type name is passed to the function along with a 

property name as a parameter, and the function 

returns a type name, which describes the type of the 

retrieved object when selecting the given property on 

an object of the given type. The third parameter is 

‘dot’ or ‘arrow’ depending whether the function call 

refers to an OclAny or a Collection class. For 

the built-in types the function determines the result 

with the help of the System.Reflection namespace 

[Mic03a], and for the model types the AGSI Interface 

returns the answer. 

In summary, the semantic analysis performs two 

activities: it maps string-based path names onto types, 

and maps OCL specific operations onto the 

appropriate semantic model constructs. 

Code Generation 
Code generation is realized using the 

System.CodeDom namespace of .NET Framework 

[Mic03a]. It means that the code generation is a 

syntax tree composition, from which the framework 

generates the source code. Using CodeDOM the 

generated source code will be syntactically correct in 

all cases; our task is only to deal with the appropriate 

semantic content. 

The OCL Runtime (Fig. 3) contains C# language 

implementation for each predefined OCL types. 

Using these classes the operations contained by the 

constraints can easily be expressed in the C# 

language. While the current version of C# does not 

support class templates, the implementation of the 

collection types is more complex, than it would be 

with generics. The Set, Sequence and Bag classes are 

implemented as abstract classes in OCL Runtime, and 

when it is required, the compiler inherits from the 

adequate base class to create a new typed collection 

class. The task of the inherited collection classes is 



the type conversion, while the fundamental 

operations are implemented by the base classes.  

 

Figure 4. The input and the output of the OCL 

Compiler 

Fig. 4 introduces the input and output of the OCL 

Compiler. In case of rewriting rules OCL Constraints 

are assigned to rule nodes; recall that rewriting rules 

are created from metamodel elements, therefore we 

also need the metamodel to access the properties of 

the meta types used in the rewriting rules.  

The model data is stored in the database and the 

instantiation of the model elements, in fact, does not 

mean the creation of a .NET object, hence no .NET 

types exist in OCL Runtime. Type handling is 

realized with the OclType abstract class and its two 

descendants: OclBasicType and 

OclModelType. 

In the CodeDOM tree there are well-defined nodes 

for certain syntax tree nodes. For each invariant, pre- 

and postcondition there is a public method with a 

bool return type. The methods of invariant 

constraints do not have parameters, while the 

methods of pre- and postconditions have the same 

parameters as the corresponding operation defined in 

UML. Finally, every OCL expression is an instance 

of the OclExpression class. It has an evaluate 

method, which returns the result of the expression. 

The evaluating method can be overridden in the 

descendant classes; it contains the code of the subtree 

starting from the oclExpression tree node. 

3. A CASE STUDY 
Using a case study we introduce how VMTS 

generates source code from a statechart diagram, 

applying graph-rewriting-based transformation 

methods. Furthermore we present how it validates 

specific properties using an assembly generated by an 

OCL Compiler during the transformation process 

with the help of constraints enlisted in the rewriting 

rules. The goal of this method is that if the statechart 

is specified in detail, then the generated code will 

handle the user interface of the system described by 

the statechart model. 

The Cinema Ticket form is the main form of the 

application, which is used on mobile platform to 

order cinema tickets using a cellular phone.  

In Fig. 5 a screenshot of the Cinema Ticket form is 

presented, and its operation is modeled with a 

statechart diagram (Fig. 6). The user interface edition 

of the “Cinema Ticket” form is accomplished with 

the form designer of the Visual Studio .NET, but the 

handler code is automatically generated from the 

statechart model.  

When the form appears, the “Order” list is empty 

(lbOrders), the combo boxes (cmbCinema, 

cmbFilmTitle and cmbDate), the numeric up-down 

control (nudTickets) and the “Close” button 

(btnClose) are enabled, and the rest of the buttons are 

disabled. The user can create an order by selecting 

the desired “Cinema”, “Film” and the exact date, and 

by specifying the number of the tickets. If a cinema is 

selected from the “Cinema” combo box, the Title of 

the “Film” combo box automatically refreshes its 

value, and similarly, if a film is selected, the “Date” 

combo box automatically loads the exact time when 

the movie starts. The “Add Order” and “Clear Fields” 

buttons (btnAddOrder and btnClearFields) become 

enabled when the value of the combo boxes or the 

numeric up-down control changes. Using the “Add 

Order” button, the user can add the actual values to 

the “Order list”.  

When the “Order” list contains at least one item, the 

“Order Tickets” button (btnOrderTickets) becomes 

enabled and naturally if an item is selected in the 

“Order” list, the “Remove” and “Edit” buttons 

(btnRemove and btnEdit) are also enabled. Using the 

“Order Tickets” button, the user can send the item of 

the “Order” list to the cinema as an SMS (or to 

cinemas if the list contains several cinemas). If the 

order was successful he gets a confirmation message. 

The incomplete statechart diagram of the “Cinema 

Ticket” form is presented in Fig. 6, where only three 

events are modeled: 

cmbCinema_SelectedIndexChanged, 

btnAddOrder_Click and 

lbOrders_SelectedIndexChanged. The complete 

statechart diagram is too large to present here. 



 

Figure 5. Cinema Ticket form for mobile platform 

 

 

Figure 6. Statechart model of the Cinema Ticket 

form 

In Fig. 6 one can see that each event has at least one 

handler state. E.g. if the On_btnAddOrder_Click 

event is fired, then the btnAddOrder_Click state 

handles it. The On_lbOrders_SelectedIndexChanged 

event is managed by four states: 

lbOrders_SelectedIndexChanged, lbOrdersCount1, 

lbOrdersCount2, and After_lbOrdersCount. This 

event handler is decomposed into sub-states, because 

the handling code depends on the value of the 

lbOrders.SelectedItem property. 

The case study uses the statechart model (Fig. 6) as 

an input model and applies a rewriting rule (Fig. 7) to 

it. In the rewriting rule the LHS graph uses the meta-

elements of the Statechart metamodel [UML03a] 

[Vis03a] and the RHS graph uses the meta-elements 

of the CodeDOM metamodel [Mic03a] [Vis03a]. On 

the left hand side of the rewriting rule there are two 

states which correspond to the statechart state, and 

there is a transition between them with a 0..* 

multiplicity on the side of the target state. It means 

that applying this rewriting rule exhaustively to a 

statechart model, it matches all the states with their 

target adjacent states. The rule has to match the 

accessible adjacent states, because we need them to 

generate the state-transitions into the source code. Of 

course, it is possible that a state has no outgoing 

transitions, and the reason why we enable the 0 in the 

multiplicity is that we want to match states having 

only incoming transitions in order to generate 

CodeDOM tree for them as well. On the right hand 

side of the rewriting rule the CTypeDeclaration 

represents a type declaration for a class, structure, 

interface or enumeration. CMemberField can be used 

to denote the declaration for a field of a type, and 



CMemberMethod to phrase the declaration for a 

method. CParameter represents a parameter 

declaration for a method, property, or constructor, 

and CSnippetStatement means a statement using a 

literal code fragment. The code generation means a 

syntax tree generation (CodeDOM tree) from which 

the framework generates the C# source code.  

 

Figure 7. Rewriting rule of the case study 

In a rewriting rule we can connect the LHS elements 

to the RHS elements, this relation between the LHS 

and RHS elements is called causality [Kar03a], which 

facilitates assigning an operation to this connection. 

Causalities can express modification or removal of an 

LHS element, and creation of an RHS element. In 

Fig. 7 the causalities are drawn as dotted lines. The 

create operation and attribute transformation, which 

is one of the most important parts of the rewriting 

process, are accomplished by XSL scripts. The XSL 

scripts can access the attributes of the object matched 

to the LHS elements, and they produce a set of 

attributes for the RHS element to which the causality 

point. VMTS stores models as labeled graphs, and 

each node and each edge have a property XML, 

which contains the attributes of the model element. In 

the current case study the VMTS rewriting engine 

concatenates the property XMLs of the matched 

states and transitions, and it uses the result as the 

input of the XSL script.  

A part of the XSL script used by the case study to 

generate the rewriting result is presented in Fig. 8. 

The XSL selects the name of the actual state (method 

name) for the methodName variable. The first part of 

the script creates a NODE type Element with the 

following properties: the name of the new element 

should be the value of the methodName variable, the 

return type should be void, the modifier attribute 

should be private, the meta type should be 

CodeMemberMethod, the RHSRuleNodeName should 

be CMemMethod, the ContainerName should be 

CinemaTicked (this is the name of the class which 

contains the methods). Finally, the CreatedProperties 

part is also added.  

<xsl:variable name="methodName" select="//Name"/>  

<xsl:template match="/"> 

  <RewriteResult> 

    <Element> 

      <ElementType>NODE</ElementType> 

      <Name><xsl:value-of select="$methodName"/></Name> 

      <ReturnType>void</ReturnType> 

      <Attributes>private</Attributes> 

      <MetaTypeName>CodeMemberMethod</MetaTypeName> 

      <RHSRuleNodeName>CMemMethod</RHSRuleNodeName> 

      <ContainerName>CinemaTicket</ContainerName> 

      <CreatedProperties> 

        <CodeMemberMethod> 

          <Name><xsl:value-of select="$methodName"/></Name> 

          <ReturnType>void</ReturnType> 

          <Attributes>private</Attributes> 

        </CodeMemberMethod> 

      </CreatedProperties> 

    </Element> 

    

    <Element> 

      <ElementType>NODE</ElementType> 

      <Name>sender</Name> 

      <Type>object</Type> 

      <MetaTypeName>CodeParameterDeclarationExpression 

     </MetaTypeName> 

      <RHSRuleNodeName>CParameter</RHSRuleNodeName> 

      <ContainerName><xsl:value-of  

      select="$methodName"/></ContainerName> 

      <CreatedProperties> 

        <CodeParameterDeclarationExpression> 

          <Name>sender</Name> 

          <Type>object</Type> 

        </CodeParameterDeclarationExpression> 

      </CreatedProperties> 

    </Element>  

... 

    

    <xsl:for-each select="//InternalTransition/Statement"> 

      <xsl:call-template name="codeSnippetStatement"/> 

    </xsl:for-each> 

... 

    

  </RewriteResult> 

</xsl:template> 

  

<xsl:template name="codeSnippetStatement"> 

  <Element> 

    <ElementType>NODE</ElementType> 

    <Name>Snippet</Name> 

    <Statement><xsl:value-of select="Value"/></Statement> 

    <MetaTypeName>CodeSnippetStatement</MetaTypeName> 

    <RHSRuleNodeName>CSnipStat</RHSRuleNodeName> 

    <ContainerName><xsl:value-of  

    select="$methodName"/></ContainerName> 

    <CreatedProperties> 

      <CodeSnippetStatement> 

        <Statement><xsl:value-of select="Value"/></Statement> 

      </CodeSnippetStatement> 

    </CreatedProperties> 

  </Element> 

  … 

</xsl:template>  

... 

Figure 8. A part of the XSL script used by the 

case study to generate the rewriting result 

The second presented XSL segment creates a 

parameter for the method, the third part selects the 



Statements of the internal transitions, and it calls the 

codeSnippetStatement template for each Statement. 

Finally, a part of the codeSnippetStatement template 

is depicted. 

Constraint Validation 
We assign constraints to model elements and to the 

steps accomplished by generators to fully specify 

models and rewriting rules. With the help of these 

constraints we obtain a precise and consistent 

description of the transformation steps. In VMTS the 

main method to specify constraint validation is the 

relation between the pre- and postconditions and the 

OCL constraints assigned to the rewriting rules. 

When we initialize the controls in .NET, e.g. change 

the Text value of a text box, then it a TextChanged 

event is raised, or the SelectedIndex property of a 

combo box is set, when it is sent a 

SelectedIndexChanged event. This behavior of the 

controls affects the operation of the form in an 

inappropriate way. There is an example for that in the 

case study, when the user selects an item in the 

“Orders list” and clicks on the “Edit” button, the form 

has to show the properties of the selected order. 

Hence it has to change the SelectedIndex value of the 

“Cinema” combo box, the SelectedIndex value of the 

“Film” combo box and so on. The effect of these 

operations is that the “Add Order” and “Clear Fields” 

buttons become enabled, but we do not want them so, 

because it is not a real property modification. We can 

eliminate this undesirable operation with a constraint 

(postcondition of the rewriting rule):  

context CMemberMethod inv handle_changes: 

if self.Type = ‘EventHandler’ then self.Statements.Count > 

0 and self.Statements[0].Value = ‘if (!m_bHandleChanges) 

return;‘ 

 

This invariant constraint describes that if the type of 

an CMemberMethod object is EventHandler, then it 

should have more than zero Statement, and the value 

of the first statement should be ‘if 

(!m_bHandleChanges) return;’. A snippet statement is a 

code fragment, and this snippet guarantees that the 

event handler functions do not handle the events if 

the value of m_bHandleChanges variable is false. 

In the “Cinema Ticket” order we require that the 

number of ordered tickets for a film to be at least 1 

but maximum 12. Therefore if the user would like to 

add an order to the “Orders list”, we have to validate 

that the value of the “Number of tickets” control is 

between 1 and 12. Therefore if the value of the 

nudTickets.Value is not proper, we have to prevent 

adding the actual values to the “Orders list”, until the 

user does not modify the “Number of tickets” field. 

The constraint that describes this condition is the 

following (postcondition of the rewriting rule):  

context CMemberMethod inv name_length: 

if self.Name = ‘btnAddOrder_Click’ then 

self.Statements.Count > 1 and self.Statements[1].Value = 

‘if (nudTickets.Value < 1 || nudTickets.Value > 12) return;‘ 

 

Using the following constraint (precondition of the 

rewriting rule), the rewriting rule validates that the 

states with the generated CodeDOM tree are not 

unreachable (isolated) states in the statechart 

diagram. It means that starting from the start state we 

can reach these states.  

context state inv constraint_unreachable: 

self.IsStartState or self.InTransitions->size() > 0 

 

To validate the code which is generated by the OCL 

Compiler, please refer to [Vis03a]. 

When we generate source code from a statechart 

model, there is usually a function for each state in the 

generated source code, which implements the 

behavior of the state (the transitions and the internal 

transitions as well). In form-based, event-driven 

development the event handler methods of the 

controls provide the operation logic of the forms. 

Therefore the goal of the case study is to generate the 

skeleton of the user interface handler code; VMTS 

generates that part of the event handler methods for 

which it has enough information in the statechart 

diagram. E.g. based on the incoming and outgoing 

transitions and their conditions, the generator can 

produce a complete event handler function from 

several model states. An example in the case study is 

the lbOrders_SelectedIndexChanged event handler 

method, which is generated from four states, and its if 

branches are generated from the transition conditions. 

Furthermore the transformation generates the code 

fragments recommended by the constraints; a part of 

this code can be assertion code. An assertion checks a 

condition and displays a message if the condition is 

false. Assertions support the testing procedure and 

contribute to the correct operation. 

Based on the presented principles, the whole process 

of the case study is the following: The OCL Compiler 

generates the constraint validation assembly, the 

matching process searches for topological matches in 

the statechart model (host graph). Then the 

Validation Module uses the validation assembly and 

checks the LHS graph containing constraints 

(preconditions) continuously at matching time or after 

the matching process on the found matches (this 

option if configurable in the system). If and only if a 

match satisfies the preconditions, the rewriting 

process generates the rewriting result with the help of 

a user defined XSL script. The Validation Module 



checks the RHS graph containing constraints 

(postconditions) on the rewriting result. The rewriting 

rule is finished successfully if and only if the 

rewriting result satisfies the postconditions. 

private void cmbCinema_SelectedIndexChanged(object sender, 

System.EventArgs e) 

{ 

   if (!bHandleChanges) return; 

   bHandleChanges = false; 

   btnAddOrder.Enabled = false; 

   btnClearFields.Enabled = false; 

   if (lbOrders.SelectedItem == null) 

   { 

      btnRemove.Enabled = true; 

      btnEdit.Enabled = true; 

   } 

   if (lbOrders.SelectedItem != null) 

   { 

      btnRemove.Enabled = false; 

      btnEdit.Enabled = false; 

   } 

   bHandleChanges = true; 

} 

 

private void lbOrders_SelectedIndexChanged(object sender, 

System.EventArgs e) 

{ 

   if (!bHandleChanges) return; 

   btnAddOrder.Enabled = true; 

   btnClearFields.Enabled = true; 

} 

 

private void btnAddOrder_Click(object sender, System.EventArgs 

e) 

{ 

   if (!bHandleChanges) return; 

   if (nudTickets.Value < 1 || nudTickets.Value > 12) return; 

   addActualValuesToOrderList(); 

   btnOrderTickets.Enabled = true; 

   cleareFields(); 

   btnAddOrder.Enabled = false; 

   btnClearFields.Enabled = false; 

} 

Figure 9. Generated event-handler source code 

A part of the generated code is presented in Fig. 9. 

These C# functions form the generated 

lbOrders_SelectedIndexChanged, 

cmbCinema_SelectedIndexChanged and 

btnAddOrder_Click event handler methods based on 

the discussed statechart diagram (Fig. 6).  

4. CONCLUSIONS AND FURTHER 

WORK 
In this paper an OCL Compiler component of an n-

layer multipurpose modeling and metamodel-based 

transformation system is presented. This work has 

introduced the need of combining UML and OCL 

during the modeling process, and discussed the steps 

(lexical and syntactic analysis, semantic analysis and 

code generation) of implementing a metamodel-based 

OCL Compiler module.  

Based on the OCL Compiler and the possibilities 

provided by VMTS, a case study has been presented 

to show the applicability and the practical relevance 

of the presented tools. It has been shown that the 

metamodel-based graph rewriting method can be 

applied to transform statechart models to a syntax 

tree, generate source code from it, and to validate the 

rewriting rule constraints during the transformation 

In statechart diagrams VMTS facilitates assigning 

function names as actions to the events. The event 

handler methods generated by the current version of 

the transformation are not fully specified ones; the 

user has to complete them on the source code level. 

As the next step of this method we will implement the 

feature to edit the event handler code at modeling 

time, and the transformation will use the specified 

event handler code snippets during the code 

generation. Furthermore, future work includes the 

design and implementation of branch conditions. 

With the help of branch conditions VMTS will 

support branch logic in the execution order of the 

rules during the transformation process, using RHS 

graphs containing constraints.  
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