
Implementing an OCL Compiler for .NET

László Lengyel
 Budapest University of

Technology and Economics
 Goldmann György tér 3.
Hungary 1111, Budapest

lengyel@aut.bme.hu

Tihamér Levendovszky
 Budapest University of

Technology and Economics
Goldmann György tér 3.
Hungary 1111, Budapest

tihamer@aut.bme.hu

Hassan Charaf
 Budapest University of

Technology and Economics
Goldmann György tér 3.
Hungary 1111, Budapest

hassan@aut.bme.hu

ABSTRACT

Model-Driven Architecture standardized by OMG facilitates separating the platform-independent part (PIM) and

the platform-specific part (PSM) of a system model. The platform-independent artifacts are mainly UML models

created with CASE tools. Due to this separation, PIM specified by the developers can be reused across several

implementation platforms of the software. PSM is ideally generated automatically from PIM via model

transformation steps performed by model compilers. Beyond the topology of the visual models additional

constraints must be specified, which ensure the correctness of the attributes among others. Dealing with OCL

constraints provides a solution for the unsolved issues, because topological and attribute transformation methods

cannot perform and express the problems that can be addressed by constraint validation. This paper discusses the

need for combining UML and OCL, it introduces the compilers in general, it shows the architecture of our OCL

Compiler for .NET, and it presents the lexical and syntactic analysis as well as the semantic analysis and code

generation techniques in detail. The OCL Compiler has been implemented as a module of our n-layer

multipurpose modeling and metamodel-based transformation system called Visual Modeling and Transformation

System (VMTS). The OCL Compiler module facilitates validating (i) constraints contained by the metamodels at

the time of the model instantiation process, and (ii) constraints contained by the transformation steps during the

metamodel-based graph transformation. An illustrative case study is also provided, which introduces how VMTS

generates source code from a statechart diagram, and how it validates specific properties using the OCL

Compiler.

Keywords
OCL Compiler, .NET, Constraints, Constraint Validation, UML, Metamodeling, VMTS

1. INTRODUCTION
Model transformation is a possible solution for

realizing model compiler. Its methods are vital in

several applications, for instance the Object

Management Group’s (OMG) Model-Driven

Architecture (MDA) standard [OMG03a] strongly

builds on model compilers, which automatically

create a platform-specific model from the platform-

independent models specified by the modelers.

Software model transformation provides a basis for

model compilers, which plays a central role in the

MDA architecture.

There are many CASE tools that support drawing

UML diagrams and other features like code

generation and reverse engineering. However,

support for OCL attached to model transformation

and mappings between models are rarely found in

these tools. There are several tasks that a CASE tool

should offer in order to provide support for OCL. For

example, syntax analysis of OCL expressions and a

precise mechanism for reporting syntactic errors help

in writing syntactically correct OCL statements. An

important feature is the semantic analyzer, which

reports as many errors as possible in order to help the

user develop solid OCL code.

Often we need to specify a model more precisely than

a topology-oriented visual modeling language

facilitates it. It is a prevalent case that we want to

define expressions and constraints on our model. The

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,

ISBN 80-86943-01-1

Copyright UNION Agency – Science Press, Plzen, Czech Republic

Object Constraint Language (OCL) [OCL03a] is a

formal language for analysis and design of software

systems. It is a subset of the industry-standard

Unified Modeling Language [UML03a] that allows

software developers to write constraints and queries

over object models. A constraint is a restriction on

one or more values of an object-oriented model or

system. There are four types of constraints. (i) An

invariant is a constraint that states a condition that

must always be met by all instances of the class, type,

or interface. (ii) A precondition to an operation is a

restriction that must be true at the moment before the

operation is executed. Obligations are specified by

postconditions. (iii) A postcondition to an operation

is a restriction that must be true at the moment that

the operation has just ended its execution. (iv) A

guard is a constraint that must be true before a state

transition fires. Besides these, OCL can be used as a

navigation language as well.

Our n-layer metamodel-based model storage and

transformation software package is called Visual

Modeling and Transformation System [Lev04a]

[Vis03a]. VMTS is implemented using Microsoft

.NET Framework [Mic03a] and illustrates an

approach, where model storage and model

transformation can be treated uniformly, and what

links them together is the notion of the metamodel.

Modeling environments built on metamodeling are

highly configurable (visual) modeling tools allowing

constraints to be specified in advance. VMTS uses

graph rewriting for model transformation as a

powerful tool with strong mathematical background

[Lev04a]. The atoms of graph transformation are

rewriting rules, where each rewriting rule consists of

a left hand side graph (LHS) and a right hand side

graph (RHS). Applying a graph rewriting rule means

finding an isomorphic occurrence (match) of LHS in

the graph to which the rule is being applied (host

graph), and replacing this subgraph with RHS.

Replacing means removing elements which are in

LHS but not in RHS, and gluing elements which are

in RHS but not in LHS. The graph transformation is

defined as an ordered sequence of rewriting rules, in

other words, we control the transformation process by

sequencing the rewriting rules. Previous work

[Lev04a] has introduced an approach, where LHS

and RHS of the rules are built from metamodel

elements. It means that an instantiation of LHS must

be found in the host graph instead of the isomorphic

subgraph of LHS. Hence LHS and RHS graphs are

the metamodels of the graphs which we find and

replace in the host graph.

Often it is not enough to match graphs using the

topological information only. There are cases in

which we want to restrict the desired match by other

properties, e.g. we want to match a subgraph with a

node which has a special property, or which has a

unique relation between the properties of the matched

nodes. The metamodel-based definition of the

rewriting rules facilitates assigning OCL constraints

to the pattern rule nodes contained by the

transformation steps, and with OCL these conditions

can be expressed easily. A precondition

(postcondition) assigned to a rewriting rule is a

Boolean expression that must be true at the moment

when the rewriting rule is fired (after the completion

of a rewriting rule). If a precondition of a rewriting

rule is not true then the rewriting rule fails without

being fired. If a postcondition of a rewriting rule is

not true after the execution of the rewriting rule, then

the rewriting rule fails. A direct corollary of this is

that an OCL expression in LHS is a precondition to

the rewriting rule, and an OCL expression in RHS is

a postcondition to the rewriting rule. A rewriting rule

can be fired if and only if all conditions enlisted in

LHS are true. Also, if a rewriting rule finished

successfully, then all the conditions enlisted in RHS

must be true.

Constraints (pre- and postconditions) facilitate

specifying precisely the execution of the steps

contained by the transformation. Using constraints for

each step, we can define the cases in detail, in which

the step can be fired, and, of course, in which not.

OCL Compiler

Metamodel

OCL constraints

in rewriting rule

Models

Instantiation

Validation

Code / binary

Matches

Matching

Checking

Rewriting

results

Firing the

rewriting rule

Use meta

elements Instantiation

Figure 1. Block diagram for checking constraints

during the rewriting process

Fig. 1 presents a block diagram to illustrate the

method how VMTS checks the rewriting rule

constraints during the rewriting process. It is possible

in VMTS that LHS and RHS use different

metamodels, but for the sake of simplicity in the

block diagram they have a common metamodel. The

rewriting rule contains OCL constraints. VMTS does

not interpret the constraints during the rewriting, but

an assembly is used that is generated by the OCL

Compiler. The rewriting process uses the matches

found by the matching process and the compiled

assembly to validate the constraints on the matched

parts of the host graph. The rewriting process

generates the rewriting result if and only if a match

satisfies the constraints (preconditions), and the step

is successful if and only if the rewriting result

satisfies the postconditions. In Fig. 1 the rewriting

result is also an instance model of the metamodel,

because LHS and RHS use the same metamodel.

One of the most important parts of the constraint

validation method is that our constraint checking

approach does not interpret the constraints; OCL

Compiler generates C# code and compiles it to an

assembly, which validates the metamodel and the

rewriting rule constraints. This method facilitates

determining the complexity of the constraint

validation method.

This paper introduces the steps necessary for the

implementation of the OCL Compiler for .NET,

which is capable of compiling OCL constraints into

source code and a binary file that checks the OCL

constraints on the rewriting rules of a transformation

that realizes an MDA model compiler. Our example

is a UML statechart model.

The rest of this paper is organized as follows: Section

2 introduces the concept of a compiler in general, it

presents the architecture of our OCL Compiler and it

discusses the lexical and syntactic analysis as well as

semantic analysis along with the code generation in

detail. In Section 3 we illustrate a case study how to

design a C# form behavior using Visual Studio.NET

Form editor, and how VMTS generates the user

interface handler code based on the statechart model.

In this way the programmer needs to write the

application-specific parts of the code only. Finally,

conclusions and future work are delineated in Section

4.

2. CONTRIBUTION
This section presents the general considerations

related to compilers and their modules shortly and

examines the VMTS OCL Compiler in detail.

Preprocessing
Lexical

Analysis

Syntactic

Analysis

Semantic

Analysis

Platform

Independent

Optimization

Code

Generation

Platform

Dependent

Optimization

Inner Representation

Analysis

Synthesis

 Figure 2. The steps of the compilation

Implementing a compiler is a complex task consisting

of several well-defined subparts. The input of a

compiler is a textual file written in the source

language, and the output is a textual file or a binary in

the target language. The source language and the

target language can be the same or different. The two

main parts of the compilation are: (i) the analysis of

the source language input, and (ii) the generation

(synthesis) of the target language output based on the

retrieved semantic information. Fig. 2 introduces the

steps of the compilation process.

Compiler Architecture
The OCL Compiler is a part of VMTS, therefore the

generated code and the compiled assembly have to fit

in this environment. The block diagram of VMTS

and the place of the OCL Compiler in a metamodel-

based model transformation system are depicted in

Fig. 3. The user interfaces (Adaptive Modeler, Rule

Editor) are functionally separated from the model

storage unit (AGSI Core - Attributed Graph

Architecture Supporting Inheritance), which uses an

RDBMS (Microsoft SQL Server 2000) to store the

model information. Besides this the AGSI Core

exposes its interface to any other applications which

may use other technique to process AGSI data.

Figure 3. Block structure of VMTS

The OCL Interface provides a unified interface for

the user interface modules to access constraint

validation. If it is required, it uses the OCL Compiler

and loads the compiled binary (Compiled

Constraints). AGSI Core stores and handles the

models as labeled graphs: it simply uses nodes and

edges. In OCL constraints these nodes and edges

appear with their names as types, instances and

associations. The main purpose of the AGSI Interface

is to provide a linkage between the OCL expressions

and the model over which the expression should be

evaluated. AGSI provides type information from the

AGSI Core objects. During the compilation and the

constraint validation process we run only select

commands on the AGSI Core data, therefore AGSI

Interface does not support operations modifying the

model.

Lexical and Syntactic Analysis
Lexical and syntactic analyses are realized by code in

the ANSI C language, it is generated by the tools Flex

[Fle99a] and Bison [Bis98a]. We chose these tools

because (i) the compiler is implemented using

Microsoft Visual Studio and it was easy to integrate

the Flex and Bison tools into this environment, and

(ii) the VMTS is executed also in the .NET

environment.

The first step of the lexical analysis is the

tokenization, which distinguishes between the

identifiers (name) and the keywords of the language.

Tokenization is achieved by a table, which contains

the keywords. The result of this process is a sequence

of tokens, which contains the meaning of the source

program.

The task of the syntactic analysis is to find the

deduction which generates the source code of the

program, starting from the sentence symbol (S). The

analysis is the same process but in the opposite

direction. The analyzer reads the sequence of the

tokens, and using the production rules it generates an

Abstract Syntax Tree (AST), which is a model of the

program that we want to compile. The AST is a direct

association between the rules in the grammar and the

nodes in the tree, and it is purely an abstract

representation of the syntax, modeled as a tree

[Ake03a] [Ham98a]. The inner nodes of the AST

contain no terminal symbols, while the leaves contain

the tokens.

Original rules Reworked rules

A -> b c? d A -> b d | b c d

A -> b c* d A -> b optionalC d

optionalC -> /* empty */

 | optionalC c

A -> b c+ d A -> b optionalC d

optionalC -> c | optionalC c

Table 1. Reworked EBNF rules for Bison

The UML specification [UML03a] uses EBNF

notation [Ext96a] for the grammar specification,

which we had to modify in certain places to be able to

process it with Bison. We had to rework the ?

(optional element), the * (0..* multiplicity) and the

+ (1..* multiplicity) notations. Table 1 presents the

original EBNF and the modified rules for Bison. The

/* empty */ notation means the empty symbol.

The generation of the AST is possible if and only if

the program is syntactically correct [Loe03a].

Semantic Analysis
OCL allows certain abbreviations in numerous places

and leaving out some identifiers if they do not cause

misconceptions (e.g. the left self identifier). Before

we can start the semantic analysis we must perform a

syntax tree transformation, which inserts the missing

identifiers into the AST.

In the OCL Compiler we cannot use the traditional

symbol table, because the symbols are not in the code

to be compiled, but it must be obtained from another

place, namely, from the VMTS model database. The

most important pieces information we need during

the compilation are: (i) we have to decide about an

identifier appearing in a type name position whether

it is already defined, and whether it is visible for the

context where it is appeared, (ii) during the OCL

property selection we have to check the selected item

of the class: whether it is an attribute, operation or

association (and in this case whether it is navigable).

For these tasks we implemented a class

(TypeHandler) which hides the duality of the

types from the other part of the OCL Compiler. We

can consider this class as a dynamic symbol table of

the types. The TypeHandler class contains the

typeOfCall function:

String typeOfCall(String typeName, String
propertyName, ’dot’|’arrow’)

A type name is passed to the function along with a

property name as a parameter, and the function

returns a type name, which describes the type of the

retrieved object when selecting the given property on

an object of the given type. The third parameter is

‘dot’ or ‘arrow’ depending whether the function call

refers to an OclAny or a Collection class. For

the built-in types the function determines the result

with the help of the System.Reflection namespace

[Mic03a], and for the model types the AGSI Interface

returns the answer.

In summary, the semantic analysis performs two

activities: it maps string-based path names onto types,

and maps OCL specific operations onto the

appropriate semantic model constructs.

Code Generation
Code generation is realized using the

System.CodeDom namespace of .NET Framework

[Mic03a]. It means that the code generation is a

syntax tree composition, from which the framework

generates the source code. Using CodeDOM the

generated source code will be syntactically correct in

all cases; our task is only to deal with the appropriate

semantic content.

The OCL Runtime (Fig. 3) contains C# language

implementation for each predefined OCL types.

Using these classes the operations contained by the

constraints can easily be expressed in the C#

language. While the current version of C# does not

support class templates, the implementation of the

collection types is more complex, than it would be

with generics. The Set, Sequence and Bag classes are

implemented as abstract classes in OCL Runtime, and

when it is required, the compiler inherits from the

adequate base class to create a new typed collection

class. The task of the inherited collection classes is

the type conversion, while the fundamental

operations are implemented by the base classes.

Figure 4. The input and the output of the OCL

Compiler

Fig. 4 introduces the input and output of the OCL

Compiler. In case of rewriting rules OCL Constraints

are assigned to rule nodes; recall that rewriting rules

are created from metamodel elements, therefore we

also need the metamodel to access the properties of

the meta types used in the rewriting rules.

The model data is stored in the database and the

instantiation of the model elements, in fact, does not

mean the creation of a .NET object, hence no .NET

types exist in OCL Runtime. Type handling is

realized with the OclType abstract class and its two

descendants: OclBasicType and

OclModelType.

In the CodeDOM tree there are well-defined nodes

for certain syntax tree nodes. For each invariant, pre-

and postcondition there is a public method with a

bool return type. The methods of invariant

constraints do not have parameters, while the

methods of pre- and postconditions have the same

parameters as the corresponding operation defined in

UML. Finally, every OCL expression is an instance

of the OclExpression class. It has an evaluate

method, which returns the result of the expression.

The evaluating method can be overridden in the

descendant classes; it contains the code of the subtree

starting from the oclExpression tree node.

3. A CASE STUDY
Using a case study we introduce how VMTS

generates source code from a statechart diagram,

applying graph-rewriting-based transformation

methods. Furthermore we present how it validates

specific properties using an assembly generated by an

OCL Compiler during the transformation process

with the help of constraints enlisted in the rewriting

rules. The goal of this method is that if the statechart

is specified in detail, then the generated code will

handle the user interface of the system described by

the statechart model.

The Cinema Ticket form is the main form of the

application, which is used on mobile platform to

order cinema tickets using a cellular phone.

In Fig. 5 a screenshot of the Cinema Ticket form is

presented, and its operation is modeled with a

statechart diagram (Fig. 6). The user interface edition

of the “Cinema Ticket” form is accomplished with

the form designer of the Visual Studio .NET, but the

handler code is automatically generated from the

statechart model.

When the form appears, the “Order” list is empty

(lbOrders), the combo boxes (cmbCinema,

cmbFilmTitle and cmbDate), the numeric up-down

control (nudTickets) and the “Close” button

(btnClose) are enabled, and the rest of the buttons are

disabled. The user can create an order by selecting

the desired “Cinema”, “Film” and the exact date, and

by specifying the number of the tickets. If a cinema is

selected from the “Cinema” combo box, the Title of

the “Film” combo box automatically refreshes its

value, and similarly, if a film is selected, the “Date”

combo box automatically loads the exact time when

the movie starts. The “Add Order” and “Clear Fields”

buttons (btnAddOrder and btnClearFields) become

enabled when the value of the combo boxes or the

numeric up-down control changes. Using the “Add

Order” button, the user can add the actual values to

the “Order list”.

When the “Order” list contains at least one item, the

“Order Tickets” button (btnOrderTickets) becomes

enabled and naturally if an item is selected in the

“Order” list, the “Remove” and “Edit” buttons

(btnRemove and btnEdit) are also enabled. Using the

“Order Tickets” button, the user can send the item of

the “Order” list to the cinema as an SMS (or to

cinemas if the list contains several cinemas). If the

order was successful he gets a confirmation message.

The incomplete statechart diagram of the “Cinema

Ticket” form is presented in Fig. 6, where only three

events are modeled:

cmbCinema_SelectedIndexChanged,

btnAddOrder_Click and

lbOrders_SelectedIndexChanged. The complete

statechart diagram is too large to present here.

Figure 5. Cinema Ticket form for mobile platform

Figure 6. Statechart model of the Cinema Ticket

form

In Fig. 6 one can see that each event has at least one

handler state. E.g. if the On_btnAddOrder_Click

event is fired, then the btnAddOrder_Click state

handles it. The On_lbOrders_SelectedIndexChanged

event is managed by four states:

lbOrders_SelectedIndexChanged, lbOrdersCount1,

lbOrdersCount2, and After_lbOrdersCount. This

event handler is decomposed into sub-states, because

the handling code depends on the value of the

lbOrders.SelectedItem property.

The case study uses the statechart model (Fig. 6) as

an input model and applies a rewriting rule (Fig. 7) to

it. In the rewriting rule the LHS graph uses the meta-

elements of the Statechart metamodel [UML03a]

[Vis03a] and the RHS graph uses the meta-elements

of the CodeDOM metamodel [Mic03a] [Vis03a]. On

the left hand side of the rewriting rule there are two

states which correspond to the statechart state, and

there is a transition between them with a 0..*

multiplicity on the side of the target state. It means

that applying this rewriting rule exhaustively to a

statechart model, it matches all the states with their

target adjacent states. The rule has to match the

accessible adjacent states, because we need them to

generate the state-transitions into the source code. Of

course, it is possible that a state has no outgoing

transitions, and the reason why we enable the 0 in the

multiplicity is that we want to match states having

only incoming transitions in order to generate

CodeDOM tree for them as well. On the right hand

side of the rewriting rule the CTypeDeclaration

represents a type declaration for a class, structure,

interface or enumeration. CMemberField can be used

to denote the declaration for a field of a type, and

CMemberMethod to phrase the declaration for a

method. CParameter represents a parameter

declaration for a method, property, or constructor,

and CSnippetStatement means a statement using a

literal code fragment. The code generation means a

syntax tree generation (CodeDOM tree) from which

the framework generates the C# source code.

Figure 7. Rewriting rule of the case study

In a rewriting rule we can connect the LHS elements

to the RHS elements, this relation between the LHS

and RHS elements is called causality [Kar03a], which

facilitates assigning an operation to this connection.

Causalities can express modification or removal of an

LHS element, and creation of an RHS element. In

Fig. 7 the causalities are drawn as dotted lines. The

create operation and attribute transformation, which

is one of the most important parts of the rewriting

process, are accomplished by XSL scripts. The XSL

scripts can access the attributes of the object matched

to the LHS elements, and they produce a set of

attributes for the RHS element to which the causality

point. VMTS stores models as labeled graphs, and

each node and each edge have a property XML,

which contains the attributes of the model element. In

the current case study the VMTS rewriting engine

concatenates the property XMLs of the matched

states and transitions, and it uses the result as the

input of the XSL script.

A part of the XSL script used by the case study to

generate the rewriting result is presented in Fig. 8.

The XSL selects the name of the actual state (method

name) for the methodName variable. The first part of

the script creates a NODE type Element with the

following properties: the name of the new element

should be the value of the methodName variable, the

return type should be void, the modifier attribute

should be private, the meta type should be

CodeMemberMethod, the RHSRuleNodeName should

be CMemMethod, the ContainerName should be

CinemaTicked (this is the name of the class which

contains the methods). Finally, the CreatedProperties

part is also added.

<xsl:variable name="methodName" select="//Name"/>

<xsl:template match="/">

 <RewriteResult>

 <Element>

 <ElementType>NODE</ElementType>

 <Name><xsl:value-of select="$methodName"/></Name>

 <ReturnType>void</ReturnType>

 <Attributes>private</Attributes>

 <MetaTypeName>CodeMemberMethod</MetaTypeName>

 <RHSRuleNodeName>CMemMethod</RHSRuleNodeName>

 <ContainerName>CinemaTicket</ContainerName>

 <CreatedProperties>

 <CodeMemberMethod>

 <Name><xsl:value-of select="$methodName"/></Name>

 <ReturnType>void</ReturnType>

 <Attributes>private</Attributes>

 </CodeMemberMethod>

 </CreatedProperties>

 </Element>

 <Element>

 <ElementType>NODE</ElementType>

 <Name>sender</Name>

 <Type>object</Type>

 <MetaTypeName>CodeParameterDeclarationExpression

 </MetaTypeName>

 <RHSRuleNodeName>CParameter</RHSRuleNodeName>

 <ContainerName><xsl:value-of

 select="$methodName"/></ContainerName>

 <CreatedProperties>

 <CodeParameterDeclarationExpression>

 <Name>sender</Name>

 <Type>object</Type>

 </CodeParameterDeclarationExpression>

 </CreatedProperties>

 </Element>

...

 <xsl:for-each select="//InternalTransition/Statement">

 <xsl:call-template name="codeSnippetStatement"/>

 </xsl:for-each>

...

 </RewriteResult>

</xsl:template>

<xsl:template name="codeSnippetStatement">

 <Element>

 <ElementType>NODE</ElementType>

 <Name>Snippet</Name>

 <Statement><xsl:value-of select="Value"/></Statement>

 <MetaTypeName>CodeSnippetStatement</MetaTypeName>

 <RHSRuleNodeName>CSnipStat</RHSRuleNodeName>

 <ContainerName><xsl:value-of

 select="$methodName"/></ContainerName>

 <CreatedProperties>

 <CodeSnippetStatement>

 <Statement><xsl:value-of select="Value"/></Statement>

 </CodeSnippetStatement>

 </CreatedProperties>

 </Element>

 …

</xsl:template>

...

Figure 8. A part of the XSL script used by the

case study to generate the rewriting result

The second presented XSL segment creates a

parameter for the method, the third part selects the

Statements of the internal transitions, and it calls the

codeSnippetStatement template for each Statement.

Finally, a part of the codeSnippetStatement template

is depicted.

Constraint Validation
We assign constraints to model elements and to the

steps accomplished by generators to fully specify

models and rewriting rules. With the help of these

constraints we obtain a precise and consistent

description of the transformation steps. In VMTS the

main method to specify constraint validation is the

relation between the pre- and postconditions and the

OCL constraints assigned to the rewriting rules.

When we initialize the controls in .NET, e.g. change

the Text value of a text box, then it a TextChanged

event is raised, or the SelectedIndex property of a

combo box is set, when it is sent a

SelectedIndexChanged event. This behavior of the

controls affects the operation of the form in an

inappropriate way. There is an example for that in the

case study, when the user selects an item in the

“Orders list” and clicks on the “Edit” button, the form

has to show the properties of the selected order.

Hence it has to change the SelectedIndex value of the

“Cinema” combo box, the SelectedIndex value of the

“Film” combo box and so on. The effect of these

operations is that the “Add Order” and “Clear Fields”

buttons become enabled, but we do not want them so,

because it is not a real property modification. We can

eliminate this undesirable operation with a constraint

(postcondition of the rewriting rule):

context CMemberMethod inv handle_changes:

if self.Type = ‘EventHandler’ then self.Statements.Count >

0 and self.Statements[0].Value = ‘if (!m_bHandleChanges)

return;‘

This invariant constraint describes that if the type of

an CMemberMethod object is EventHandler, then it

should have more than zero Statement, and the value

of the first statement should be ‘if

(!m_bHandleChanges) return;’. A snippet statement is a

code fragment, and this snippet guarantees that the

event handler functions do not handle the events if

the value of m_bHandleChanges variable is false.

In the “Cinema Ticket” order we require that the

number of ordered tickets for a film to be at least 1

but maximum 12. Therefore if the user would like to

add an order to the “Orders list”, we have to validate

that the value of the “Number of tickets” control is

between 1 and 12. Therefore if the value of the

nudTickets.Value is not proper, we have to prevent

adding the actual values to the “Orders list”, until the

user does not modify the “Number of tickets” field.

The constraint that describes this condition is the

following (postcondition of the rewriting rule):

context CMemberMethod inv name_length:

if self.Name = ‘btnAddOrder_Click’ then

self.Statements.Count > 1 and self.Statements[1].Value =

‘if (nudTickets.Value < 1 || nudTickets.Value > 12) return;‘

Using the following constraint (precondition of the

rewriting rule), the rewriting rule validates that the

states with the generated CodeDOM tree are not

unreachable (isolated) states in the statechart

diagram. It means that starting from the start state we

can reach these states.

context state inv constraint_unreachable:

self.IsStartState or self.InTransitions->size() > 0

To validate the code which is generated by the OCL

Compiler, please refer to [Vis03a].

When we generate source code from a statechart

model, there is usually a function for each state in the

generated source code, which implements the

behavior of the state (the transitions and the internal

transitions as well). In form-based, event-driven

development the event handler methods of the

controls provide the operation logic of the forms.

Therefore the goal of the case study is to generate the

skeleton of the user interface handler code; VMTS

generates that part of the event handler methods for

which it has enough information in the statechart

diagram. E.g. based on the incoming and outgoing

transitions and their conditions, the generator can

produce a complete event handler function from

several model states. An example in the case study is

the lbOrders_SelectedIndexChanged event handler

method, which is generated from four states, and its if

branches are generated from the transition conditions.

Furthermore the transformation generates the code

fragments recommended by the constraints; a part of

this code can be assertion code. An assertion checks a

condition and displays a message if the condition is

false. Assertions support the testing procedure and

contribute to the correct operation.

Based on the presented principles, the whole process

of the case study is the following: The OCL Compiler

generates the constraint validation assembly, the

matching process searches for topological matches in

the statechart model (host graph). Then the

Validation Module uses the validation assembly and

checks the LHS graph containing constraints

(preconditions) continuously at matching time or after

the matching process on the found matches (this

option if configurable in the system). If and only if a

match satisfies the preconditions, the rewriting

process generates the rewriting result with the help of

a user defined XSL script. The Validation Module

checks the RHS graph containing constraints

(postconditions) on the rewriting result. The rewriting

rule is finished successfully if and only if the

rewriting result satisfies the postconditions.

private void cmbCinema_SelectedIndexChanged(object sender,

System.EventArgs e)

{

 if (!bHandleChanges) return;

 bHandleChanges = false;

 btnAddOrder.Enabled = false;

 btnClearFields.Enabled = false;

 if (lbOrders.SelectedItem == null)

 {

 btnRemove.Enabled = true;

 btnEdit.Enabled = true;

 }

 if (lbOrders.SelectedItem != null)

 {

 btnRemove.Enabled = false;

 btnEdit.Enabled = false;

 }

 bHandleChanges = true;

}

private void lbOrders_SelectedIndexChanged(object sender,

System.EventArgs e)

{

 if (!bHandleChanges) return;

 btnAddOrder.Enabled = true;

 btnClearFields.Enabled = true;

}

private void btnAddOrder_Click(object sender, System.EventArgs

e)

{

 if (!bHandleChanges) return;

 if (nudTickets.Value < 1 || nudTickets.Value > 12) return;

 addActualValuesToOrderList();

 btnOrderTickets.Enabled = true;

 cleareFields();

 btnAddOrder.Enabled = false;

 btnClearFields.Enabled = false;

}

Figure 9. Generated event-handler source code

A part of the generated code is presented in Fig. 9.

These C# functions form the generated

lbOrders_SelectedIndexChanged,

cmbCinema_SelectedIndexChanged and

btnAddOrder_Click event handler methods based on

the discussed statechart diagram (Fig. 6).

4. CONCLUSIONS AND FURTHER

WORK
In this paper an OCL Compiler component of an n-

layer multipurpose modeling and metamodel-based

transformation system is presented. This work has

introduced the need of combining UML and OCL

during the modeling process, and discussed the steps

(lexical and syntactic analysis, semantic analysis and

code generation) of implementing a metamodel-based

OCL Compiler module.

Based on the OCL Compiler and the possibilities

provided by VMTS, a case study has been presented

to show the applicability and the practical relevance

of the presented tools. It has been shown that the

metamodel-based graph rewriting method can be

applied to transform statechart models to a syntax

tree, generate source code from it, and to validate the

rewriting rule constraints during the transformation

In statechart diagrams VMTS facilitates assigning

function names as actions to the events. The event

handler methods generated by the current version of

the transformation are not fully specified ones; the

user has to complete them on the source code level.

As the next step of this method we will implement the

feature to edit the event handler code at modeling

time, and the transformation will use the specified

event handler code snippets during the code

generation. Furthermore, future work includes the

design and implementation of branch conditions.

With the help of branch conditions VMTS will

support branch logic in the execution order of the

rules during the transformation process, using RHS

graphs containing constraints.

5. ACKNOWLEDGMENTS
The fund of „Mobile2004 Consortium” has

supported, in part, the activities described in this

paper.

6. REFERENCES

[Ake03a] David Akehurst, Octavian Patrascoiu: OCL 2.0 -

Implementing the Standard for Multiple Metamodels,

Workshop Proceedings, 6th International Conference

on the UML and its Applications,<<UML>>2003,

ENTCS, Oct. 2003

[Bis98a] Bison, Official Homepage,

http://www.gnu.org/software/bison/bison.html

[Ext96a] Extended Backus-Naur Form (EBNF) ISO/IEC

14977:1996(E) standard

[Fle99a] Flex, Official Homepage,

http://www.gnu.org/software/flex/

[Ham98a] Ali Hamie, John Howse, Stuart Kent:

Interpreting the Object Constraint Language,

Proceedings 5th Asia Pacific Software Engineering

Conference (APSEC '98), December 2-4, 1998, Taipei,

Taiwan, 1998

[Kar03a] Karsai G., Agrawal A., Shi F., Sprinkle J.: On the

Use of Graph Transformations for the Formal

Specification of Model Interpreters, Journal of

Universal Computer Science, Special issue on Formal

Specification of CBS, 2003

[Lev04a] Levendovszky T., Lengyel L., Mezei G., Charaf

H.: A Systematic Approach to Metamodeling

Environments and Model Transformation Systems in

VMTS, Electronic Notes in Theoretical Computer

Science, International Workshop on Graph-Based

Tools (GraBaTs) Rome, 2004

[Loe03a] Sten Loecher, Stefan Ocke: A Metamodel-Based

OCL-Compiler for UML and MOF. In OCL 2.0 -

Industry standard or scientific playground, Workshop

Proceedings, 6th International Conference on the UML

and its Applications,<<UML>>2003, ENTCS, Oct.

2003

[Mic03a] Microsoft .NET Framework

http://msdn.microsoft.com/netframework/

[OCL03a] Object Constraint Language Specification

(OCL), www.omg.org

[OMG03a] OMG Model Driven Architecture homepage,

www.omg.org/mda/

[UML03a] UML 2.0 Spec. http://www.omg.org/uml/

[Vis03a] VMTS Web Site

http://avalon.aut.bme.hu/~tihamer/research/vmt

